2-Week International School of Semiconductor: Circuit Design, Manufacturing, Packaging, and Inspection

Overview

The 2-Week International School of Semiconductor offers an immersive experience for students and professionals to gain a comprehensive understanding of semiconductor technology. From circuit design to manufacturing, packaging, and inspection, participants will learn theoretical concepts and acquire hands-on skills through intensive lectures, laboratory sessions, and cultural exchange activities.

Program Highlights

- Duration: 2 weeks (Monday to Friday, 9:00 AM 5:00 PM)
- Focus Areas:
 - 1. Circuit Design Fundamentals
 - 2. Semiconductor Manufacturing Processes
 - 3. Packaging and Testing Techniques
 - Advanced Inspection Methods using cutting-edge tools (e.g., SEM, AFM)
 - 5. Future Technologies and Green Initiatives
- Audience: International students and professionals with an interest in semiconductor technology and applications.
- Location: iCAST Labs, National Chung Hsing University (NCHU), Taiwan

Program Schedule

Week 1: Foundations and Practical Skills

Week 1	Morning (9am-12pm)	Afternoon (2-5pm)
	Lecture	Hand-on
Day 1	Opening	Lab Tour in iCAST
	Introduction to Semiconductors	Circuits with Arduino(I)
		Dr. Utkarsh Kumar/Dr. Chandrasekar
		Room 226 (iCAST)
Day 2	Semiconductor Materials	Circuits with Arduino(II)
		Dr. Utkarsh Kumar/Dr. Chandrasekar
		Room 226 (iCAST)
Day 3	IC Design	Photomask Design & Pattering
		Sample Preparation Techniques
		(iCAST & Instrument Center)
Day 4	Thin Film Technology	Lithography, Etching & Deposition

		Processes (Instrument Center)
Day 5	Solar Cell Semiconductor Devices	Optical Microscope (OM) & Atomic
		Force Microscope (AFM) (iCAST)

Week 2: Advanced Processes and Applications

Week 2		
Day 6	Green Technology	Packaging and Testing
Day 7	Green Manufacturing	Scanning Electron Microscope (SEM)
		(iCAST)
Day 8	Semiconductor Manufacturing	Packaging & Testing application
		(ICPMS) (Instrument Center)
Day 9	Semiconductor Devices	Cultural Visit: National Museum of
		Natural Science (NMNS) –" TSMC
		Semiconductor World "Visit
Day 10	Future Semiconductor Technologies	Lab Report and Group Presentations
		Closing (iCAST)

Target Audience

- Undergraduate and graduate students interested in STEM.
- Professionals seeking an introduction to semiconductor technology.
- International participants aiming to expand their expertise and network.

Learning Outcomes for a 2-Week Semiconductor School

By the end of this 2-week program, participants will:

1. Understand Fundamental Semiconductor Concepts:

 Gain a comprehensive understanding of semiconductor physics, materials, and key manufacturing processes, including photolithography, thin film deposition, and etching.

2. Develop Practical Skills:

- Acquire hands-on experience in semiconductor sample preparation, photomask patterning, lithography, and device fabrication.
- Learn how to use advanced tools such as Optical Microscopes (OM), Atomic Force Microscopes (AFM), and Scanning Electron Microscopes (SEM).
- 3. Connect Theory to Real-World Applications:

- Understand the role of packaging and testing in the functionality and reliability of semiconductor devices.
- Explore cutting-edge technologies like green semiconductor innovations and the future of semiconductor manufacturing.

4. Cultural Exchange:

Visit the leading exhibition at the National Museum of Natural Science's TSMC Semiconductor World to bridge classroom learning with real-world industry advancements, while fostering cross-cultural understanding and appreciation of Taiwan's contributions to global semiconductor technology.

5. Foster Innovation and Critical Thinking:

 Engage in discussions about green technology and sustainable semiconductor manufacturing to understand the industry's role in global environmental challenges.

6. Lab Report and Presentation:

 Consolidate the knowledge and hands-on experiences gained throughout the program by preparing and presenting lab reports, fostering teamwork, and encouraging critical thinking.

This program provides a well-rounded introduction to the semiconductor industry, preparing participants for further exploration or potential engagement in this critical technology field.

Learning Outcomes

- 1. **Technical Mastery**: Gain in-depth knowledge of semiconductor physics, materials, manufacturing processes, and packaging techniques.
- 2. **Practical Experience**: Operate industry-standard equipment like SEM, AFM, and lithography tools to fabricate and inspect semiconductor devices.
- 3. **Global Perspective**: Explore the latest trends in green technology and future semiconductor innovations, fostering a sustainable outlook.
- 4. **Cultural Enrichment**: Participate in cultural exchange activities and visit Taiwan's leading semiconductor exhibition to connect classroom learning with real-world applications.

Day 5 Afternoon: Lab Report and Presentation

Objective: Consolidate the knowledge and hands-on experiences gained throughout the program by preparing and presenting lab reports, fostering teamwork, and encouraging critical thinking.

Activity Details

- 1. Lab Report Preparation (2:00 PM 3:30 PM)
 - Each group will summarize their key findings from the week's experiments, including:
 - Sample preparation
 - Photomask patterning
 - Lithography and etching
 - SEM/AFM inspection results
 - Packaging and testing insights
 - Format: Brief written report with visuals (graphs, photos of lab setups, etc.).

2. Group Presentations (3:30 PM - 5:00 PM)

- Each group will give a **5-10 minute presentation** covering:
 - Goals of the experiments
 - Methods and equipment used
 - Results and observations
 - Challenges faced and solutions implemented
 - Future implications or applications of the techniques learned.
- Presentations will be followed by a brief Q&A session with peers and instructors.

Learning Outcome:

Participants will improve their scientific communication skills, learn to analyze and present experimental data effectively, and reflect on how their learning applies to real-world semiconductor research and applications.

This session encourages collaboration, fosters confidence in presenting technical work, and serves as a capstone activity for the program.